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Demand Uncertainty Estimation

▪ Task Description:

– Estimating NDM Energy Consumption is a complex problem. Any prediction, including those calculated by Machine 

Learning models, will include an element of uncertainty.

– The uncertainty can be broadly grouped into two categories:

– Systematic uncertainty – that is, actual behaviour that can be measured in the custom that is inherently unpredictable and uncertain. This 

uncertainty is irreducible and will be influence any prediction.

– Prediction Uncertainty – that is, uncertainty in the accuracy of the estimate generated by the algorithm or model in question. This 

uncertainty can potentially be reduced by tuning the model and / or input parameters.

– This task is designed to help quantify and explain that uncertainty. It could also ultimately inform a realistic expectation 

of the UIG uncertainty level that could be observed in the daily energy prediction.

▪ Summary of Results:

– The Analysis suggested daily upper and lower bounds for typical NDM consumption for a given Meter Point in EUC1 

throughout the Gas year.

– When used to test the actual consumption for the NDM sample meter points, the uncertainty bounds flagged a number 

of meter points that were used to train the NDM Models which have atypical consumption patterns (consumption that 

falls outside of the ‘normal’ range for more than 25% of observations)

– Removing these Meter Points from the training set improves the performance of the ML models when predicting 

energy at LDZ level

– These uncertainty estimates could be used as a Sample Meter Point validator and improve the quality of training data 

used to train the NDM algorithm.
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When measuring uncertainty it should be noted that every estimate has errors due to:

– Inherent randomness in the target value

– Model uncertainty/parameter uncertainty

These errors could be expressed as 

a) A fitted distribution

b) An interval (e.g. a 95% interval)

c) A Monte Carlo empirical distribution of possible outcomes

Our analytics partner have developed prototypes representing the below:

a) Fitting a Gaussian (or the related log-Gaussian)

b) Quantile regression 

c) Monte Carlo dropout

Measuring uncertainty in machine learning

Monte Carlo 

Dropout

Quantile

Regression

Gaussian

Terms of reference

Gaussian Sometimes referred to as normal distribution, this is a mathematical function that defines the 

probability of a number in some context falling between any two real constants. 

Quantile Regression A type of regression analysis used in statistics and econometrics

Monte Carlo dropout A method used to model the probability of different outcomes in a process that cannot easily 

be predicted due to the intervention of random variables
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Sample charts representing fitting a Gaussian to single meter points - domestic meter points only

The blue series 

represents the 

actual consumption

The green series 

represents the lower 

boundary where the bottom 

2.5% of consuming sites fall 

outside that specific 

boundary on a given day 

The orange series 

represents the upper 

boundary where the top 

2.5% of consuming 

sites fall outside that 

specific boundary on a 

given day
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Sample charts fitting a Gaussian to single meter points, domestic only, highlighting cases which don’t fit

The blue series 

represents the 

actual consumption

The green series 

represents the lower 

boundary where the 

bottom 2.5% of 

consuming sites fall 

outside that specific 

boundary on a given 

day 

The orange series 

represents the upper 

boundary where the 

top 2.5% of 

consuming sites fall 

outside that specific 

boundary on a given 

day

It was important to include meter ‘outliers’ in order to discover whether errors are the result of the specific site or separate external factors.  The below charts show 

examples of meter points that fall outside normal patterns of behaviour.  We wanted to discover whether including these would enhance or diminish the performance 

of the uncertainty estimator and the demand estimation algorithm itself.  
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• The estimate of the total consumption in an LDZ, or any other collection of users, is the sum of the individual estimates

• Uncertainties don’t combine in the same way  

– N completely dependent errors sum as N

– N completely independent errors sum as sqrt(N)

• For EUC1 NDM, total demand is probably somewhere in between these two

– Some prediction errors will be specific to a single home or business (e.g. this family is away, that family has guests staying)

• The model overestimate usage by 20% for some users, underestimate by 20% for some others and the total can end up more 

accurate than any individual estimate

– Some prediction errors will be common to all users (e.g. an extreme weather event at the limits of the model’s training)

• If the model systematically overestimates by 2%, the total will overestimate by 2%

The subsequent phase of analysis work involved combining uncertainties whilst incorporating the following considerations. 

Combining Uncertainties

In simple terms, the above approach can be explained as working with a single meter point in the first 

instance in order to understand how uncertainties combine.  Multiple meter points are then included to 

discover correlations over a large data set.   This is a beneficial approach as combining uncertainties 

results in better estimates. 
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The analysis work on combining uncertainties gave rise to the following questions and findings as detailed below.  

• What is the uncertainty on the total estimate, if we have bounds on individual users?

– We could assume completely independent errors

– Leads to bounds which are generally too narrow, getting worse as we add more estimates to the sum

• We could assume completely correlated errors 

– Leads to bounds which are too wide

– Some of the individual-specific errors “average out”

• We could assume there is some degree of correlation

– Can produce “intermediate” bounds that are not too narrow (like independent errors)

– Need some measure of correlation: there is an additional parameter to fit with this method

• Our investigation so far has found

– There is error correlation (so the first approach is not suitable)

– The errors are not 100% correlated (so the second approach is too pessimistic)

– The correlation coefficient varies, but we can model that variation and use that model to produce reasonable bounds
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▪ Can we build a NN model that also estimate the 

correlation between two users?

▪ We can fit a joint distribution the same way we 

can fit a single sample distribution

– Train on random pairs of meters from the training data

▪ We train a model that, for each day, estimates a 

2-D Gaussian distribution for a pair of meters 

and a normalized correlation coefficient.

– Each input goes through several layers with weight 

tying (so the model is identical for A and B)

– Output layers for A and B generate mean and s.d. for 

each

– An separate output layer takes input from both sides 

and generates a correlation coefficient

Pairwise estimate

Output  A Output  B
Corr. Coeff. Output

Input  A Input  B

These layers have 

identical weights

These layers have 

identical weights
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Pairwise results

Individual

Readings 

(with error 

bounds) 

Truth: blue

Estimated 

error 

covariance 

showing 

seasonal 

variation

Sum of two (blue) with error bounds (green, 

orange) produced using the covariance to 

tighten them
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Combining many estimates

▪ If we assume the errors are Gaussian, the pairwise correlations give us enough information to bound 

the total

– This is an assumption that might not hold in all circumstances, and in particular “tail events” might not be well 

captured by this model (e.g. another Beast from the East might be outside these bounds)

▪ Early results show it is behaving as expected: as we add 100s of meters, we find that:

– Assuming independent errors fails: too many points lie outside the estimated interval

– Assuming fully correlated errors is more conservative than needed: it is considerably wider than needed

– The partially correlated error model produces intervals that cover over 95% of the true points

▪ There is a scaling issue as implemented (though we can likely address this)

– At present it evaluates the correlation coefficient on all pairs of meters

– We can replace the sum over all pairs of meters with a Monte Carlo evaluation

▪ There is also an issue with negative correlation coefficients

– Need to ensure that the covariance matrix is positive definite

– Could fix this by enforcing all correlation coefficients to be greater than zero (slightly conservative assumption)
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▪ When prototyping the uncertainty estimator on individual sample-set 

meter points, it was observed that a number of meter points had a 

high percentage of readings outside of the bounds of the uncertainty 

estimator

▪ This is a useful application of the uncertainty estimator to validate 

sample set meter points

▪ Provided details of 61 meter points which had more than 25% of 

their readings outside of the error interval estimated by a prototype 

uncertainty estimator (which was set between 2.5% and 97.5%). 

Following might be worth investigating for each of these meter 

points:

– Are any of these sites commercial/industrial rather than residential? E.g. they 

only use energy Monday to Friday. 

– Are there data quality issues? E.g. the daily meter read is set a fixed value 

for multiple days. 

– Why are there meters which appear to be duplicates?

Uncertainty estimator as sample-set validator
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▪ Have developed a means to estimate uncertainty on EUC1 only in the neural network NDM estimate.

▪ This provides a means to ‘validate’ the sample set data.

▪ The overall performance of the neural network might have been improved due to changes in model and removing sample 

meter points that don’t appear to be representative.

▪ Some of the understanding and approaches developed here are potentially useful when applied to long term reconciliation.

Model Summary

Model Sequential Model with 

modification for 

uncertainty estimator

Segment 1 model per LDZ for 

EUC1 only

Inputs Standard set with some 

outliers removed,

Training GY 2006-2017 (exc. 

2016)

Testing GY 2016

Summary
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How it works: top level summary

Estimate uncertainty for 
individual meter points

• Relatively easy to do

• Used to flag up discrepancies in 
sample data set

Correlate uncertainties 
across multiple users

• i.e. how do we combine 
uncertainties? 

• Impractical to carry out 
between all pairs

Monte Carlo estimation 
of distribution across 
meters

• Error bounds scale up correctly

• Likely provides a conservative 
approximation of uncertainty

Run against full meter 
population

• Will depend on representativity 
of sample data set
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▪ In trying to produce sensible uncertainty distributions, it was discovered that a number of meter points 

were adversely affecting the training process due to highly unusual patterns of behaviour. By removing 

these points from the sample dataset, we were able to improve the performance of both the uncertainty 

estimator and the demand estimation algorithm itself.

▪ Examples of these meter point consumption patterns are presented here:

Interesting results
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Uncertainty Results

EA

EM

SC

Uncertainty results shown with some points 

filtered. Results still with sequential NN.

Filtering some points mostly improved means and 

standard deviations, but EM was an exception.

Filtering mostly improved uncertainties but EA in the 

summer was an exception.
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▪ There can be high individual fluctuations between meters but these seem to average out overall.

– What matters most for uncertainty on the total is the common, systematic error

▪ The relative uncertainty from domestic EUC1 alone can be several percentage points of total demand.

▪ There is seasonal variation in uncertainty

– absolute uncertainty is highest in winter, while relative uncertainty is highest in summer

▪ We expect that improvements to the model (LDZ input, functional model) would also reduce the 

uncertainty

– A next step would be to add uncertainty estimation to these models

▪ This would need to be extended to EUC2+

▪ Filtering out certain examples seems to improve the uncertainty fit without harming overall performance

– We might be able to be smarter and just filter out dates that seem to be missing (also addressed by 

the functional model discussed in the Machine Learning Findings 13.2.6)

Further insights and next steps
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