
13.2.6: - Accuracy of NDM Algorithm - use of 

Weather Data – Advanced Machine Learning 



Findings Status Ongoing 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) UIG Impact Peak 

Volatility % 

20% 

reduction 
UIG Hypothesis  Non-Daily Metered energy is estimated each day using the NDM allocation algorithm. The goal of this analysis is to see whether 

we can improve the prediction of NDM energy using new, innovative tools and algorithms. Improving NDM allocation accuracy 

should reduce day-on-day UIG volatility and base level UIG at Allocation, meaning less movement of energy and revenue at 

reconciliation and therefore less commercial risk for our customers. 

 

In this pack, we explore various approaches to improving NDM allocation accuracy using cutting edge machine learning tools. 

UIG Impact Annual 

Average % 

70% 

reduction 

Data Tree 

References 

EUC, Energy, Annual Quantity, Weather, CWV 
Confidence in 

Percentages 

+/-5% (will 

vary by 

LDZ) 

Findings Analysis in this Pack 

The results of each line of analysis follow in this pack, but the overall outcome is that using a Neural Network 

Machine Learning Algorithm improves the accuracy of NDM prediction. The best results are highlighted in green. 

 

Using weather and consumption data between October 2006 and October 2016 combined with the cold weather 

and corresponding demand data from Winter 2017-18 to train a Neural Network Model produces an algorithm that: 

1. reduces base UIG at allocation by 70% on average (so 4% UIG would be 1.2% using this algorithm) 

2. reduces volatility at allocation by 20% on average (so +- 10% daily UIG change would be +- 8%). 

 

We also learned that using more historic consumption and weather data improves the prediction accuracy 

(contrary to the current model which limits the analysis to three rolling annual periods), so this model could become 

more accurate over time as we gain access to richer sources of daily consumption data. 

 

Implementing a Neural Net would result in a ‘black box’ algorithm that would allocate NDM energy. The algorithm 

would be too complex to share directly, but if implemented then Xoserve could provide the algorithm to our 

customers using an API or web service, or similar. 

1. Machine Learning EUC01 with XGBoost 

2. Testing XGBoost model on EUC02 

3. Machine Learning EUC01 with Neural Network 

4. Test XGBoost model on full LDZ EUC01 AQ 

5. Enhance Neural Network Model with additional 

Historic Data and test on full LDZ AQ 

6. Trial an EUC01 Neural Network model built at 

mainland UK level (no LDZ split) 
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Summary of this Findings Pack 
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Whilst these models show a significant improvement in predicting EUC01B demands, there a number of considerations which could 

affect the success of this modelling approach if it were to be used in practice: 

Limitations of the Analysis Limitations in actual application 

• Models developed for EUC01 only – other EUCs would likely 

require bespoke models 

• Analysis doesn't include the new EUCs for I&C and Prepayment 

sites 

• Sample sizes of the higher EUCs may not be sufficient – or 

representative of actual usage in that EUC 

• Models were tested against Gas Year 2016 only – for pre-Nexus 

months UIG values have been simulated using Nexus formulae. 

• Use of a Neural Network can improve the prediction of NDM 

Demands – but does not predict any other UIG causes 

• Complexity of the model – would make its replication in 

Shipper/Supplier systems much harder. Would effectively become 

an Xoserve provided service. 

• Unexpected changes in behaviours or other demand drivers – 

would not be reflected in the models unless the deployed model 

was set to continually, iteratively retrain itself using incoming data. 

 

Further considerations 

• Generate Neural Network models for all of the other EUCs as well as EUC01. 

• Train the models for all LDZs simultaneously, but with the additional parameter indicating which LDZ each of the training sample sites 

belongs to.  This may give some of the benefits expected by using an increased amount of data, but without the drawbacks seen when 

developing the Mainland UK model. 

• The additional meter location parameters (latitude, longitude elevation and population density) could be used as inputs for the LDZ 

and EUC specific NN models. 
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Findings Status Ongoing 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) 
UIG Impact Peak 

Volatility % 
15-20% 

UIG Hypothesis  It may be possible to improve the NDM demand estimation model through the use of machine learning (ML).  This may be 

because the dependence of gas usage on weather or AQ is complex and difficult to capture in a ‘hand crafted’ model.  We also 

have additional weather data available which might help with the prediction.  This data can easily be incorporated into a ML model. 

To test this hypothesis we will train ML models to predict NDM demand for domestic meters in EUC01, as the findings in item 

13.3.2 showed that EUC01 makes the largest contribution to baseline UIG. 

 

Having previously used AQ data for the NDM sample set for gas years 2014, 2015, and 2016, we expanded the data to cover 

back to 2011, and additionally several months of data over a cold winter for 2017. This permits training on gas years 2012-2015 

and on winter 2017 (as a significant portion of the weather data for 2011 is missing) and testing on 2016.  More data, particularly 

more weather data, should improve the model. 

 

It is likely that recent temperature history, or temperature time derivative features will improve the model as people’s behaviour, 

and thermal masses of buildings typically introduce time lags.  We will include a historic and time derivative temperature features 

into ML models. 

UIG Impact Annual 

Average % 
10-25% 

Confidence in 

Percentages 

+/-5% (will 

vary by 

LDZ) 

Data Tree 

References 

Wind, temperature, CWV 

Findings Approach to analysis  

It was determined that usage in the sample set could be predicted better than the current NDM sample model; 

using the additional weather inputs various measures of UIG and UIG volatility on the NDM sample set are 80-90% 

of their values using the current NDM model. 

• A strong predictor for the ML model was CWV.  

• More data improves the ML model.  

• Temperature derivative features have a small impact, but including the average temperature over the last few 

days has a larger impact on a model which does not include CWV. 

What does this mean?: It is likely that ML model would predict usage outside the sample set more accurately 

than the current model, however this has not been verified.  In order to obtain a step change in performance it is 

likely that more data would be required. 

We tested XGBoost model performance on gas year 2016 

data. We compare training on 2014 & 2015, training on 

2012, 2013, 2014 & 2015, and training on 2012-2015 + 

winter 2017.  

 

Additionally we compared training with and without 

temperature history and derivative features on 2012-2015 + 

winter 2017. 

 

We also compared raw weather to CWV and SNCWV. 

Summary of Findings: Machine Learning EUC01 with XGBoost 
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Supporting evidence 1: Results table – Lower is better. 

LDZ 
New model training 

years 
Model 

Mean daily 

error (kWh) 

RMS error on 

total daily usage 

(kWh) 

StD. on total 

daily error 

(kWh) 

Mean (abs) day-to-

day change in 

error (kWh) 

EA 

Current 570 1,086 924 791 

14,15 XGB A 802 1,395 1,142 1,036 

1215 XGB A 541 1,084 940 827 

1215, w17 XGB A 586 1,105 937 810 

1215,w17  XGB B 561 940 754 715 

SC 

Current 283 711 652 537 

14,15 XGB A 402 851 750 635 

1215 XGB A 278 703 646 529 

1215, w17 XGB A 245 660 613 499 

1215,w17  XGB B 214 590 550 440 

EM 

Current 226 1,378 1,359 1,051 

14,15 XGB A 412 1,487 1,429 1,116 

1215 XGB A 37 1,229 1,228 920 

1215, w17 XGB A 64 1,188 1,186 894 

1215,w17  XGB B 40 1,004 1,004 754 

 

• Test year is gas year 2016 with UK-Link AQs. 

Trained with AQs (one per meter, gas year) 

calculated from real usage and WAALPs 

• Model A: uses AQ, holiday indicators, day of 

week, month of year, and a set of raw weather 

inputs including a temperature gradient feature, 

temperatures from the previous day and the 

mean average temperature of the past 3 days. 

• Model B: uses all the same inputs as model A, 

but with the CWV added.  This turns out to be a 

very useful input, suggesting that it may be 

possible to produce a better model by using 

fewer better engineered features (like the CWV) 

rather than expecting the ML algorithm to 

generate these from raw inputs.  This is 

typically true for data limited problems. 

• Separate models were trained on: 

• Years 2014 and 2015 

• Years 2012 to 2015  

• Years 2012 to 2015 and winter 2017 

(w17) 

• We considered several different error metrics of 

base error and volatility error, but the model 

was trained to minimise the daily usage error on 

each meter.  It would be possible to train a 

model to minimise these other metrics, 

(however this is difficult and unlikely to result in 

a step change in performance).   

Measures of 

UIG volatility 
Measures of 

base UIG 
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EM, XGB 12-15 Winter 17 Model B 

 

• For the best model (trained on all available data and using 

CWV as a feature (model B), the results are shown here for 3 

LDZs for the 2016 test year. 

• The errors on the ML model and the current NDM model are 

also compared on the lower chart. 

• When CWV is included in the model inputs, the prediction 

error for the ML model follows the current NDM model 

closely, but the volatility spikes are smaller suggesting that 

the ML model reacts more quickly to weather changes. 

 

Supporting evidence 2: Plots of ML results 
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SC, XGB 12-15 incl. Winter17 Model B EA, XGB 12-15 incl. Winter 17 Model B 
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Note lower volatility with ML models 



Supporting evidence 3: Feature importance for XGBoost 

• A useful feature of decision trees is an output showing how often the inputs are used in the model which tells us how important 

they are to the accuracy of the model, and therefore we can estimate how useful they are as predictors. 

• AQ is clearly the most important input as would be expected given the AQ is the calculated annual usage level for a site. 

• Inputs temperature0, temperature1, temperature2, temperature3 are mean average temperatures for 05:00-10:00, 11:00-16:00, 

17:00-22:00 and 23:00-04:00.  temperature yday0, temperature yday1 and temperature yday2 are the mean average temperatures 

from the previous day for 05:00-12:00, 13:00-20:00 and 21:00-04:00. 

• The mean average temperature over the past 3 days is surprisingly important for model A. 

• Comparing model A with model B, the CWV in model B takes over the role of the temperature features, showing that this is a 

well designed model input and that the Effective Temperature memory in the CWV is important for accurately estimating usage. 

 

model B model A 
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Findings Status Ongoing 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) UIG Impact Peak 

Volatility % 
Ongoing 

UIG Hypothesis  It may be possible to improve the NDM demand estimation model through the use of machine learning (ML).  This may be 

because the dependence of gas usage on weather or AQ is complex and difficult to capture in a ‘hand crafted’ model.  We also 

have additional weather data available which might help with the prediction.  This data can easily be incorporated into a ML model. 

To test this hypothesis we will train ML models to predict NDM demand for domestic meters in EUC1. 

 

Apply the best model for domestic users to predict usage in EUC2 to see if the model can be easily extended to other sites. 

UIG Impact Annual 

Average % 
Ongoing 

Confidence in 

Percentages 
Ongoing Data Tree 

References 

EUC, CWV 

Findings Approach to analysis  

The resulting models generally did not perform as well as the current NDM models. The ML model performed 

slightly better over the winter but not as well during warmer weather. This may be because gas consumers in 

EUC2 are inherently more diverse and hard to predict, or because the model weather fit parameters are tailored 

too closely to EUC1 usage. 

 

What does this mean?: More work would have to be done to determine if an ML model could produce improved 

predictions.  Any improvements are likely to be similar to those seen in EUC 01. If we move NDM allocation to a 

ML based prediction, then different models may be required for each EUC. 

The best model that had been obtained for EUC1 was using 

XGBoost including the CWV.  This was applied to EUC2 and 

error metrics were calculated.  LDZs EA, EM and SC were 

used. 

Summary of Findings: Testing XGBoost model on EUC02 
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LDZ Model 

Mean daily 

error over 

year (kWh) 

RMS error 

on total 

daily usage 

(kWh) 

Mean day-

day total 

abs error 

diff (kWh) 

StD. on 

day-day 

total error 

(kWh) 

EA 
current 1,827 10,467 7,442 10,306 

XGB 12-15, w17 B -853 13,256 10,653 13,229 

SC 
current 551 5,722 4,030 5,696 

XGB 12-15, w17 B 1,564 7,811 6,599 7,653 

EM 
current 1,100 29,787 21,788 29,767 

XGB 12-15, w17 B -4,360 29,024 21,817 28,696 

Supporting evidence 1: Results table for ML Model tested on EUC02 data – lower is better. 

 

• We then used the best XGBoost model parameters for training on EUC1 to train on EUC2 (with some modifications for the higher 

gas usage per meter in this EUC) 

• The models produced did not result in better predictions than the current NDM model.  This may be because the fit parameters 

were not carefully tuned for this EUC, or because there are more diverse gas users in this EUC, making usage harder to predict. 

• As might be expected, day of the week is an important predictor of gas usage in EUC2 (compared to EUC1) as it contains 

industrial sites. 
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EM, XGB 12-15 including Winter 2017 B 

Supporting evidence 2:  Plots of EUC 02 ML results (continued on next page) 

 

• For the best model (trained on all available data and using 

CWV as a feature (model B), the results are plotted here for 

3 LDZs for the 2016 training year. 

• The errors on the ML model and the current NMD model 

are also plotted. 
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SC, XGB 12-15 Winter 2017 B EA, XGB 12-15 Winter 2017 B 
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Findings Status Ongoing 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) 

UIG Impact Peak 

Volatility % 

15-20% 

but can 

make it 

worse 
UIG Hypothesis  It may be possible to improve the NDM demand estimation model through the use of machine learning (ML).  This may be 

because the dependence of gas usage on weather or AQ is complex and difficult to capture in a ‘hand crafted’ model.  We also 

have additional weather data available which might help with the prediction.  This data can easily be incorporated into a ML model. 

To test this hypothesis we will train ML models to predict NDM demand for domestic meters in EUC1. 

 

After initially obtaining modestly improved results using XGBoost for machine learning, it was determined that it would be 

worthwhile to test using a different ML ensemble.  Neural Networks (NN) are scalable, all purpose algorithms that have been 

successfully applied to a wide variety of time-series prediction problems, such as predicting Gas usage over time.  Therefore ML 

using an NN was tested.  It was also thought that the NN may interpolate and extrapolate better than XGB, and so produce better 

outputs in extreme weather scenarios. 

UIG Impact Annual 

Average % 
10-25% 

Confidence in 

Percentages 
N/A 

Data Tree 

References 

CWV, Weather 

Findings Approach to analysis  

The resulting models performed similarly to the current best XGB model on the test year.  However models for all 

three of the test LDZs exhibited occurrences of large percentage error (but relatively small absolute error) around 

gas day 240. It is possible that further improvements could be made to this model by using more advanced 

regularisation techniques in the fit, or engineering of the inputs (processing of the raw data).  The addition of more 

historic weather data is likely to be beneficial given the seasonal difference observed in the performance of the 

model. 

 

What does this mean:  Neural networks might still offer future performance improvements vs. XGBoost. Either 

more engineering/pre-processing of the inputs to the NN would be required, or more advanced regularisation 

techniques for the fit would be required.  With the addition of more data it may be the case that the NN would 

improve. 

Missing weather data was interpolated and flag/indicator 

parameters were encoded such that they could be fed into 

Neural Networks.  An appropriate width and depth of the 

Neural Network was determined by varying these 

parameters and comparing the outputs.  Different inputs and 

regularisation techniques were tested.  The best models are 

plotted here.  Additionally, fitting the whole country with a 

single model was tested. 

Summary of Findings: Machine Learning EUC01 with Neural Network 

13 



EM, Neural Network 12-15 Winter 17 B 
Supporting evidence 1:  Plots of ML results. Lower is better. 

• For the best model (trained on all available data and using CWV as a 

feature (model B), the results are plotted here for 3 LDZs (EM, EA & SC) 

for the 2016 training year. 

• The errors on the Neural Network model (ML model) and the current 

NDM model are also plotted. 

• Gas Day 240 shows worse results in the ML Model. This day is late May 

Bank Holiday (29/05/2017), suggesting that the model does not have 

enough historic data on the relationship between weather, demand and 

bank holidays to predict accurately. 

LDZ Model 

Mean daily 

error 

(kWh) 

RMS error 

on total daily 

usage (kWh) 

StD. on total 

daily error 

(kWh) 

Mean (abs) 

day-to-day 

change in 

error (kWh) 

EA 

current 570 1,086 924 791 

Neural Network 12-

15, w17 B 
441 938 828 722 

XGB 12-15, w17 B 561 940 754 715 

SC 

current 283 711 652 537 

Neural Network 12-

15, w17 B 
163 569 545 431 

XGB 12-15, w17 B 214 590 550 440 

EM 

current 226 1,378 1,359 1,051 

Neural Network 12-

15, w17 B 
-56 1,082 1,080 826 

XGB 12-15, w17 B 40 1,004 1,004 754 
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SC, Neural Network, 12-15 Winter 17 B EA, Neural Network 12-15 Winter 17 B 
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Findings Status 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) 
UIG Impact Peak 

Volatility % 
20% 

UIG Hypothesis  In previous analysis, we were able to show that a ML model for NDM consumption in EUC1 meters applied to LDZs EA, EM and 

SC resulted in an improved prediction for gas consumption of the sample set meters. However, from these results it was not 

possible to be sure that the ML improvement would be seen when the ML model was applied to predict consumption of all EUC1 

meters in an LDZ, because many of the meters in the training years were the same as those in the test year.  Nor could it be 

determined how this improvement would scale for the prediction the net consumption of a couple of million meters versus the few 

hundred in the sample set test year. 

 

The aim of this analysis is to answer these questions by using ML models previously derived to predict the usage of all of the NDM 

meters in the LDZs.  Four error metrics were calculated for each LDZ prediction.  The ‘mean daily error’ is the cumulative error 

over a year divided by the number of days in a year, and is a measure of the bias of a model.  The standard deviation of the daily 

error, and the mean absolute day-to-day change in error are measures of volatility.  The  RMS error is a measure of the typical 

prediction error that would be expected from a model in any given day (which could be positive or negative). 

UIG Impact Annual 

Average % 
25% 

Confidence in 

Percentages 

+/-5% 

standard 

deviation 

(varies by 

LDZ) Data Tree 

References 

Energy, EUC, annual quantity 

 

Findings Approach to analysis  

Decision tree XGBoost ML models were generated for 12 LDZs (a model for WN could not be generated 

due to the limited number of sample Meter Points).  All of the predictions made using the ML model for 

EUC01 outperform the current NDM model except for one error metric in SC.  The mean daily error in the 

EUC01-ML model is significantly lower than that of the current NDM model, by the order 50%, which 

means that this model would result in a smaller UIG accumulation over time.  The RMS error is reduced by 

~25%, which can be interpreted as a 25% reduction in prediction error (volatility) each day. 

 

This is strong evidence that ML can improve the NDM model at least for EUC01. 

Daily AQ profiles values were derived from UK-Link AQ data.  Results for the daily gas 

consumption using XGBoost models were then calculated for 5% of the meters in the 

LDZ.  The summed daily usage of this 5% of meters was then scaled to the full LDZ using 

the ratio of total AQs in the 5% sample to the total EUC01 AQ in the LDZ.  For the other 

EUCs, predicted consumption was computed using the current NDM model WAALPs.  

The DM energy was added.  This total predicted consumption for the LDZ was then 

compared with the ‘true consumption’ (calc input energy, stock change, shrinkage).  Error 

metrics for the current NDM model and the ML EUC01 model were calculated. 

Summary of Findings: Test XGBoost model on full LDZ EUC01 AQ 
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Supporting evidence 1: 

 

• Test year is gas year 2016 with system AQs. Trained with pseudo-AQs (one per meter, gas year) calculated from real usage and WAALPs 

• Model B: uses AQ, holiday indicators, day of week, month of year, and a set of raw weather inputs including, a temperature gradient feature, 

temperatures from the previous day and the mean temperature of the past 3 days, and the CWV. The model was trained on 

• Years 2012 to 2015 and winter 2017 (XGB 12-15 w17) 

• We considered several different error metrics of base error and volatility error, but the model was trained to minimise the daily usage error on each 

meter. 

• Mean daily error is a measure of base error, RMS error on total daily usage is a combine measure of base and volatility, standard deviation (StD) on 

total daily error is a measure of the spread of the error values, and therefore a measure of volatility, mean absolute day-to-day change in error is also 

a measure of volatility. 

 

 

• The ML algorithm has a seasonal performance profile – it is better than the NDM algorithm in the inter but doesn’t perform as 

well during the summer. This can be clearly observed on the following slides. 

17 



LDZ Model 

Mean daily 

error 

(GWh) 

RMS error 

on total daily 

usage (GWh) 

StD. on total 

daily error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error (GWh) 

EA 

current 4.58 8.59 7.26 4.34 

XGB 12-15, w17 B 2.61 6.49 5.94 3.60 

% reduction 43% 24% 18% 17% 

EM 

current 5.36 10.09 8.55 6.13 

XGB 12-15, w17 B 3.48 7.25 6.36 4.54 

% reduction 35% 28% 26% 26% 

NE 

current 3.57 7.12 6.16 4.23 

XGB 12-15, w17 B 1.44 5.11 4.90 3.45 

% reduction 60% 28% 21% 18% 

NO 

current 3.56 5.77 4.54 3.52 

XGB 12-15, w17 B 2.39 4.41 3.71 2.62 

% reduction 33% 24% 18% 25% 

NT 

current 6.46 9.65 7.17 4.50 

XGB 12-15, w17 B 5.62 8.08 5.81 3.46 

% reduction 13% 16% 19% 23% 

NW 

current 8.46 13.79 10.89 7.51 

XGB 12-15, w17 B 5.32 10.13 8.62 6.0 

% reduction 37% 27% 21% 20% 

LDZ Model 

Mean daily 

error 

(GWh) 

RMS error 

on total daily 

usage (GWh) 

StD. on total 

daily error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error (GWh) 

SC 

current 4.56 7.68 6.18 5.07 

XGB 12-15, w17 B 1.29 7.17 7.05 4.28 

% reduction 72% 7% -14% 16% 

SE 

current 2.89 9.07 8.59 5.58 

XGB 12-15, w17 B 2.13 7.66 7.36 4.65 

% reduction 26% 16% 14% 17% 

SO 

current 2.63 7.24 6.75 4.22 

XGB 12-15, w17 B 0.11 5.06 5.06 3.23 

% reduction 95% 30% 25% 22% 

SW 

current 2.93 5.58 4.75 3.02 

XGB 12-15, w17 B 0.61 4.44 4.40 2.46 

% reduction 79% 20% 7% 18% 

WM 

current 5.52 8.88 6.95 4.90 

XGB 12-15, w17 B 3.09 6.46 5.67 3.66 

% reduction 44% 27% 18% 25% 

WS 

current 1.70 4.00 3.62 2.66 

XGB 12-15, w17 B 0.73 2.97 2.88 2.01 

% reduction 57% 26% 20% 24% 

N.B. WN is missing as there was not enough data to fit the ML model Summary 

18 



EA, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 4.58 8.59 7.26 4.34 

XGB 12-15, w17 B 2.61 6.49 5.94 3.60 

% reduction 43% 24% 18% 17% 
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EM, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 5.36 10.09 8.55 6.13 

XGB 12-15, w17 B 3.48 7.25 6.36 4.54 

% reduction 35% 28% 26% 26% 
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SC, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 4.56 7.68 6.18 5.07 

XGB 12-15, w17 B 1.29 7.17 7.05 4.28 

% reduction 72% 7% -14% 16% 
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NE, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 3.57 7.12 6.16 4.23 

XGB 12-15, w17 B 1.44 5.11 4.90 3.45 

% reduction 60% 28% 21% 18% 
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NO, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 3.56 5.77 4.54 3.52 

XGB 12-15, w17 B 2.39 4.41 3.71 2.62 

% reduction 33% 24% 18% 25% 
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NT, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 6.46 9.65 7.17 4.50 

XGB 12-15, w17 B 5.62 8.08 5.81 3.46 

% reduction 13% 16% 19% 23% 
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NW, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 8.46 13.79 10.89 7.51 

XGB 12-15, w17 B 5.32 10.13 8.62 6.0 

% reduction 37% 27% 21% 20% 
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SE, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.89 9.07 8.59 5.58 

XGB 12-15, w17 B 2.13 7.66 7.36 4.65 

% reduction 26% 16% 14% 17% 
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SO, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.63 7.24 6.75 4.22 

XGB 12-15, w17 B 0.11 5.06 5.06 3.23 

% reduction 95% 30% 25% 22% 
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SW, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.93 5.58 4.75 3.02 

XGB 12-15, w17 B 0.61 4.44 4.40 2.46 

% reduction 79% 20% 7% 18% 
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WM, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 5.52 8.88 6.95 4.90 

XGB 12-15, w17 B 3.09 6.46 5.67 3.66 

% reduction 44% 27% 18% 25% 
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WS, XGB 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 1.70 4.00 3.62 2.66 

XGB 12-15, w17 B 0.73 2.97 2.88 2.01 

% reduction 57% 26% 20% 24% 
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Findings Status 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) 

UIG Impact Peak 

Volatility % 

20% 

reduction 
UIG Hypothesis  In the previous analysis we used a ML model for EUC1 combined with the current NDM model for the remaining meters to predict 

total daily consumption for each LDZ.  The ML model was built using XGBoost and trained on gas years 2012-2015 and winter 

2017 (12-15, w17).  Predictions were made for gas year 2016.  This model showed improved performance over the current NDM 

algorithm, and reduced prediction errors by around 25% on average. 

 

Previously, we had trained a neural network (NN) as well as XGBoost on the same data.  The performance of the neural network 

was similar to XGBoost.  Typically, the performance of neural networks increases more than decision trees when more training 

data is provided.  We therefore retrained the neural network with more historic weather data and sample set AQ data, from gas 

years 2006-2011 for EUC01. 

 

The trained models were evaluated on the whole LDZ using an augmented model with the current NDM algorithm being used for 

the other EUCs.  Performance metrics were calculated and UIG plots produced. 

UIG Impact Annual 

Average % 

70% 

reduction 

Confidence in 

Percentages 

+/-5% 

standard 

deviation 

(varies by 

LDZ) Data Tree 

References 

EUC, Energy, Annual Quantity, Weather 

Findings Approach to analysis  

NN ML models were generated for 12 LDZs (a model for WN could not be generated due to the limited 

number of sample meter points).  All of the predictions made using the ML model for EUC01 out perform 

the current NDM model except for one error metric in SC.  The mean daily error in the EUC01-ML model is 

significantly lower than that of the current NDM model, by the order 70%, which means that this model 

would result in a smaller base level UIG accumulation over time.  The RMS error is reduced by ~30%, 

which can be interpreted as a 25% reduction in prediction error (volatility) each day.  The error volatility of 

these model is similar or slightly increased over the XGBoost models trained in the previous analysis. 

 

The additional data appears to improve the performance of the model (no direct comparison between 

previous NDM model tested on sample set only). 

Daily AQ profiles values were derived from UK-Link AQ data.  Results for the daily gas 

consumption using NN models were then calculated for 5% of the meters in the LDZ.  The 

summed daily usage of this 5% of meters was then scaled to the full LDZ using the ratio 

of total AQs in the 5% sample to the total AQ of EUC01 meters in the LDZ.  For the other 

EUCs, predicted consumption was computed using the current NDM model 

WAALPs.  The DM energy was added.  This total predicted consumption for the LDZ was 

then compared with the ‘true consumption’ (calc input energy, stock change, 

shrinkage).  Error metrics for the current NDM model and the ML EUC1 model were 

calculated. 

Summary of Findings: Enhance Neural Network Model with additional Historic 

Data and test on full LDZ AQ 
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Supporting evidence 1: Results table for analysis 

 

• Test year is gas year 2016 with UK Link AQs. Trained with 

pseudo-AQs (one per meter, gas year) calculated from real 

usage and WAALPs 

• Model B: uses AQ, holiday indicators, day of week, month of 

year, and a set of raw weather inputs including, a temperature 

gradient feature, temperatures from the previous day and the 

mean temperature of the past 3 days, and the CWV. The model 

was trained on Years 2006 to 2015 and winter 2017 (NN 06-15 

w17) 

• We considered several different error metrics of base error and 

volatility error, but the model was trained to minimise the daily 

usage error on each meter. 

• Mean daily error is a measure of base error, RMS error on total 

daily usage is a combine measure of base and volatility, 

standard deviation (StD) on total daily error is a measure of the 

spread of the error values, and therefore a measure of volatility, 

mean absolute day-to-day change in error is also a measure of 

volatility. 

• The uppermost table compares the results of the neural network 

trained for ECU1 model, augmented with the current NDM 

model, with the results of the current NDM model only. 

• The lower table compares the results of two identical neural 

network models, trained with different amounts of historic 

sample meter data, where the model NN 12-15, w17 B was 

trained with sample meter data dating from gas years 2012 to 

2015 and the winter of 2017. 

 

LDZ Model 

Mean daily 

error 

(GWh) 

RMS error 

on total daily 

usage (GWh) 

StD. on total 

daily error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error (GWh) 

EA 

current 4.58 8.59 7.26 4.34 

NN 06-15, w17 B 1.61 6.19 5.98 3.93 

% reduction 65% 28% 18% 9% 

SC 

current 4.56 7.68 6.18 5.07 

NN 06-15, w17 B 0.82 6.52 6.47 4.13 

% reduction 82% 15% -5% 19% 

EM 

current 5.36 10.09 8.55 6.13 

NN 06-15, w17 B 0.77 6.20 6.15 4.57 

% reduction 85% 38% 28% 25% 

LDZ Model 

Mean daily 

error 

(GWh) 

RMS error 

on total daily 

usage (GWh) 

StD. on total 

daily error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error (GWh) 

EA 
NN 12-15, w17 B 2.11 6.30 5.93 3.81 

NN 06-15, w17 B 1.61 6.19 5.98 3.93 

SC 
NN 12-15, w17 B 1.26 7.04 6.92 4.37 

NN 06-15, w17 B 0.82 6.52 6.47 4.13 

EM 
NN 12-15, w17 B 4.25 7.90 6.66 4.71 

NN 06-15, w17 B 0.77 6.20 6.15 4.57 
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EA, NN 06-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 4.58 8.59 7.26 4.34 

XGB 12-15, w17 B 2.61 6.49 5.94 3.60 

NN 12-16, w17 B 2.11 6.30 5.93 3.81 

NN 06-16, w17 B 1.61 6.19 5.98 3.93 
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EM, NN 06-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 5.36 10.09 8.55 6.13 

XGB 12-15, w17 B 3.48 7.25 6.36 4.54 

NN 12-16, w17 B 4.25 7.90 6.66 4.71 

NN 06-16, w17 B 0.77 6.20 6.15 4.57 
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SC, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 4.56 7.68 6.18 5.07 

XGB 12-15, w17 B 1.29 7.17 7.05 4.28 

NN 12-16, w17 B 1.26 7.04 6.92 4.37 

NN 06-16, w17 B 0.82 6.52 6.47 4.13 
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NE, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 3.57 7.12 6.16 4.23 

XGB 12-15, w17 B 1.44 5.11 4.90 3.45 

NN 12-16, w17 B 0.79 5.19 5.13 3.72 

NN 06-16, w17 B 0.08 4.86 4.86 3.55 
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NO, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 3.56 5.77 4.54 3.52 

XGB 12-15, w17 B 2.39 4.41 3.71 2.62 

NN 12-16, w17 B 2.46 4.50 3.76 2.69 

NN 06-16, w17 B 1.54 3.98 3.67 2.65 
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NT, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 6.46 9.65 7.17 4.50 

XGB 12-15, w17 B 5.62 8.08 5.81 3.46 

NN 12-16, w17 B 4.43 7.67 6.26 3.67 

NN 06-16, w17 B 2.83 7.44 6.88 3.82 
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NW, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 8.46 13.79 10.89 7.51 

XGB 12-15, w17 B 5.32 10.13 8.62 6.0 

NN 12-16, w17 B 4.50 9.19 8.01 5.50 

NN 06-16, w17 B 4.28 9.37 8.33 5.63 
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SE, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.89 9.07 8.59 5.58 

XGB 12-15, w17 B 2.13 7.66 7.36 4.65 

NN 12-16, w17 B 1.29 7.44 7.33 4.63 

NN 06-16, w17 B 0.34 6.97 6.97 4.58 
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SO, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.63 7.24 6.75 4.22 

XGB 12-15, w17 B 0.11 5.06 5.06 3.23 

NN 12-16, w17 B 0.41 4.69 4.68 3.24 

NN 06-16, w17 B -0.87 5.13 5.06 3.24 
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SW, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 2.93 5.58 4.75 3.02 

XGB 12-15, w17 B 0.61 4.44 4.40 2.46 

NN 12-16, w17 B 1.84 8.39 8.19 5.01 

NN 06-16, w17 B 0.05 4.50 4.50 2.52 

42 



WM, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 5.52 8.88 6.95 4.90 

XGB 12-15, w17 B 3.09 6.46 5.67 3.66 

NN 12-16, w17 B 5.87 16.08 14.97 9.63 

NN 06-16, w17 B 1.95 5.35 4.98 3.25 
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WS, NN 12-15 w17 B 

Model 

Mean 

daily 

error 

(GWh) 

RMS error 

on total 

daily 

usage 

(GWh) 

StD. on 

total daily 

error 

(GWh) 

Mean (abs) 

day-to-day 

change in 

error 

(GWh) 

current 1.70 4.00 3.62 2.66 

XGB 12-15, w17 B 0.73 2.97 2.88 2.01 

NN 12-16, w17 B 1.07 8.47 8.40 5.60 

NN 06-16, w17 B -0.14 3.14 3.14 2.00 
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Findings Status 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Complex machine learning (Ref #13.2.6) 
UIG Impact Peak 

Volatility % 

None 

demon-

strated 
UIG Hypothesis  

Specific Item 

In the previous analysis we used a neural network model for EUC1 combined with the current NDM model for the remaining 

meters to predict total daily consumption for each LDZ.  The model was trained on sample data from gas years 2006-2015 and 

winter 2017 (06-15, w17).  Predictions were made for gas year 2016.  This model showed improved performance over the current 

NDM algorithm, and reduced prediction errors by around 30% on average. 

 

Neural networks (and other machine learning techniques) offer the ability to create highly nonlinear models using input data which 

is difficult to interpret using hand crafted models.  In order to do this they typically require large amounts of training data.  In this 

analysis we built a single neural network model for the whole country (with no splits by LDZ).  The inputs to the model were raw 

weather data from ~12 weather stations around the country, day of the week and holiday indicators, and features which were 

specific to the location of each meter that were thought to be relevant to the gas consumption of an individual residential property.  

These were location (latitude, longitude), elevation, and population density.  To offset the large amount of inputs (and hence 

model parameters), the model was trained on sample meter data from the whole country rather than LDZs individually.  This 

approach offers an alternative to individual LDZ models, and may be able to capture the gas-usage pattern of individual 

households more accurately, and hence return a reduced UIG. 

UIG Impact Annual 

Average % 

None 

demon-

strated 

Confidence in 

Percentages 
N/A 

Data Tree 

References 

EUC, Energy, Annual Quantity, Weather 

Findings Approach to analysis  

Several neural network models were tested where the inputs were raw weather data from 12 weather 

stations.  The structure of the neural networks chosen were general for the this type of regression 

problem, and not specifically engineered to using intuition or a significant number of trial and improvement 

steps.  None of the trained models produced better results (when used to model EUC1, augmented with 

the current NDM model for other EUCs) than the current NDM model. 

 

Further work could be done on the whole country neural network model structure, and feature engineering 

of the inputs, to reduce the number of input parameters.  However it is likely to be more fruitful to pursue 

generating similar models to those in the previous analysis on the remaining EUCs, as these have already 

showed significant promise. 

The rough location of each meter was determined from the outside codes (first bit of the 

postcode) in the Key Data.  For each outside code location an elevation was obtained 

using an online mapping API service.  For each outer code region a population density 

estimate was made from 2011 Census data.  This data as well as the weather data and 

calendar data was used to train a NN.  

 

Test results for the model were calculated for each LDZ as was done for the previous 

analysis.  This total predicted consumption for the LDZ was then compared with the ‘true 

consumption’ (calc input energy, stock change, shrinkage).  Error metrics for the current 

NDM model and the ML EUC01 model were calculated. 

Summary of Findings: Trial an EUC01 Neural Network model built at mainland 

UK level (no LDZ split) 
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EA EM 

NE SC 

Supporting evidence 1: UIG plots for Mainland UK model 

The initial NN results for the whole country model have not performed as well as the current NDM model.  It is possible this model could be 

improved with significantly more work on the neural net architecture, and feature engineering of input parameters.  The additional inputs 

used in this analysis (latitude, longitude, elevation, population density) could be used in the LDZ models similar to those generated in the 

previous analysis, and/or the individual LDZ models could be trained simultaneously to reduce manual effort.  This is likely to be a more 

productive avenue for investigation than doing a lot of work on whole country model. 
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