
UIG Task Force  
 

13.2.5: - Accuracy of NDM Algorithm - use of 
Weather Data – (basic machine learning) 



Findings Status Closed 

Area & Ref # Accuracy of NDM Algorithm - use of Weather Data – Ref#13.2 (machine learning Ref#13.2.5) UIG Impact Peak 
Volatility % 

Reduced 
by 23% 

UIG Impact Annual 
Average % N/A UIG Hypothesis  Can current raw weather data (temperature, possibly wind) and time data (including holidays) be used within a non-

linear model to model historical UIG? If machine learning algorithm isn't capable of modelling UIG: can we add 
additional data (precipitation, irradiance, humidity, wind speed, wind direction). If model does improve UIG, move 
towards a solution within NDM demand estimation. 

Confidence in 
Percentages M 

Data Tree 
References 

WCF, CWV, ALP, DAF, AQ 

Findings Approach to analysis  
The use of machine learning showed that it wasn’t possible to deliver a ‘step change’ improvement in results 
based on the current weather inputs. This indicates that as a next step we need to focus on the inputs to the 
model, rather than the mechanics of the model itself. 
 
Using Machine Learning approaches to predict UIG from data inputs can reduce the absolute volatility by 
around 23% on average (e.g. a range of volatility of +-10% would be reduced to +-7.7%).  
 
The following slides provide the supporting evidence for the results using the existing raw weather data inputs. 
 
Confidence in percentages is medium as this analysis is exploratory to identify the potential benefits of using 
machine learning to inform the NDM Algorithm. A reduction here suggests there could be benefits in using this 
technology but does not guarantee the same level of improvement when used on supply point level data.  

A number of machine learning algorithms were tried against a 
variety of ‘input’ data in an attempt to model UIG for that data. 
This provides an indication of how good the NDM demand 
estimation algorithm could be with the current data set.  

Summary of Findings 
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Graph illustrating modelled historical vs. observed historical UIG. 
Example for the ‘Boosted Tree’ machine learning algorithm shown below 
 
 

Supporting Evidence (1/3) 
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Graph illustrating modelled historical vs. observed historical UIG for North Eastern LDZ. 
Example result shown for ‘Boosted Tree’ algorithm below.  

Supporting Evidence (2/3) 
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The first numeric column in the following table shows the impact of removing a data set from the predicted UIG model compared against the maximum improvement of 23.1% 
volatility reduction. The second numeric column shows the potential volatility reduction using only that data set to achieve the UIG prediction. 23.1% is the performance when 
all datasets are used. Green highlight shows where the data item has the biggest impact on the UIG prediction. 
 

Supporting Evidence (3/3) 

Input Data Set

Performance when 
input is removed 
(23.1 when all used) 
(% Gain )

Performance using 
only this input (% 
Gain)

4 hourly temperature 22.8 17.7
Morning Temperature 19.5 13.5

Afternoon Temperature 22 16.2
Wind Speed 22.2 2
CWV and SNCWV 20.1 14.3
Day of week 22.9 0
Holidays 23.1 0.1

Legend 
Red = minimal affect 

Yellow = marginal affect 
Green = substantive affect 
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Sheet1

		Input Data Set		Performance when input is removed (23.1 when all used) (% Gain )		Performance using only this input (% Gain)

		4 hourly temperature		22.8		17.7

		Morning Temperature		19.5		13.5

		Afternoon Temperature		22		16.2

		Wind Speed		22.2		2

		CWV and SNCWV		20.1		14.3

		Day of week		22.9		0

		Holidays		23.1		0.1







Machine learning against UIG with  
additional data to NDM 



Findings Status [Closed] 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Weather Data Inputs (machine learning) (Ref #13.2.5) UIG Impact 
Peak Volatility 

% 

Reduced by 
28% UIG Hypothesis  As previous analysis ‘Machine learning against UIG for raw inputs to NDM’, but expanding into additional weather data 

(precipitation, irradiance, humidity and pressure).  Several machine learning algorithms/models of increasing complexity will be 
used to try to predict UIG by LDZ, based on weather data inputs. 
 
Demand modelling behaviour is governed not only by temperature, but potentially by other key weather parameters that are not 
part of the model. This task will quickly address whether the additional weather data could reduce UIG volatility.  

UIG Impact 
Annual 

Average % 
N/A 

Confidence in 
Percentages M 

Data Tree 
References 

WCF, CWV, ALP, DAF, AQ 

Findings Approach to analysis  

It was found that the additional weather data does improve the prediction of UIG in the highly non-linear models (Gradient Boosted 
Tree and Gaussian Process).  However the increase is incremental from the previous machine learning results with models using all 
of the weather data capable of reducing root mean square error percentage UIG from ~75% to ~70%. The linear model achieved 
~85%, however the performance is more inconsistent across LDZs.  The strongest predictor (after temperature) is irradiance, which 
can reduce UIG by 3.8%, this is followed by humidity (1.7%), wind (1.0%), precipitation (0.4%) and pressure (0.4%).  The combined 
effect of all of these is 6.1% on average. 
 
Additional weather built into a non-linear machine learning model may offer improvements to predict UIG but has only a negligible 
impact on the peak UIG volatility.  Incorporating additional coarse (one reading per LDZ) weather data does help, but does not have a 
dramatic impact on reducing UIG. When peak volatility has been addressed, a non-linear model that incorporates irradiance may 
improve the annual average UIG. 
 
Confidence in percentages is medium as this analysis is exploratory to identify the potential benefits of using machine learning to 
inform the NDM Algorithm. The result suggest there could be benefits in using machine learning in the Demand Estimation process 
and we will therefore explore this further under investigation line item 13.2.6. 

Machine learning (ML) models were used 
to predict the UIG using historical 
weather data on UIG from the range of 
02/06/2012 – 31/05/2018. 
Available weather data for precipitation, 
irradiance, humidity, and pressure was 
assigned to LDZs based upon the 
distance to the LDZ the weather station. 
The existing 2 hourly temperature data, 4 
hourly wind data, and CWV variable 
along with the new data (4 hourly) was 
used to train various ML models to 
predict UIG. 

Summary of Findings 
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Table showing relative predictive 
capability of inputs.   Numbers 
are RMS (root mean squared) 
percentage reductions per day in 
the UIG per LDZ as determined 
using the Gradient Boosted 
Decision Tree model.  All 
predictions were made using the 
current day’s weather data.  
Information on holidays and day 
of the week were not included. 
 
By including the previous day’s 
temperature readings in task 
‘Machine learning against UIG for 
raw inputs to NDM’,  we were able 
to reduce the UIG by a further 
0.6%.  The effect should be 
similar here, taking the total 
reduction in UIG to 28.4%. 
 
Input Data 01/10/2012 – 31/05/2018 

Supporting Evidence (1/2) – RMSE % UIG reduction 

  Inputs to Machine Learning model and RMSE % UIG reduction 

LDZ temperature 
only 

temperature 
+ wind 

temperature 
+ humidity 

temperature 
+ 

precipitation 

temperature 
+ irradiance 

temperature 
+ pressure all all, without 

CWV 

EA 23.3 23.5 23.5 23.1 25.8 23.4 26.2 25.3 

EM 25.0 25.7 29.4 26.4 30.2 24.8 33.7 32.5 

NE 20.6 21.8 24.6 22.7 23.9 22.6 28.7 27.6 

NO 20.2 20.3 23.3 20.2 25.5 20.5 28.2 26.8 

NT 19.7 20.8 19.6 19.0 23.6 20.2 25.5 23.8 

NW 30.2 32.3 30.5 30.2 31.5 30.3 33.7 32.3 

SC 18.4 18.4 20.2 18.4 20.7 18.9 22.9 22.2 

SE 18.0 19.4 19.1 17.8 21.1 18.8 23.5 22.5 

SO 29.0 29.1 29.5 29.0 33.7 28.6 34.3 33.5 

SW 21.4 22.2 23.9 22.1 26.7 22.1 28.4 27.2 

WM 17.8 19.5 19.4 18.5 23.7 17.7 26.3 24.7 

WN 26.3 27.2 26.8 27.2 29.4 26.8 30.4 27.2 

WS 15.1 16.4 17.1 17.1 21.4 16.6 23.6 23.6 

national 22.3 23.3 24.0 22.7 26.1 22.7 28.4 27.2 

A non-linear model can predict 
UIG using temperature and wind 
data which effectively  reduces 
UIG volatility by 23.3% nationally 

A non-linear model that uses 
temperature and irradiance can 
predict UIG using temperature and 
wind data which effectively 
reduces UIG volatility by 28.4% 
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Graphs illustrating modelled historical (i.e. UIG predicted by the machine learnt model) vs. observed historical UIG.  This is for the Gradient Boosted 
Decision Tree model using of the weather inputs, (temperature, humidity, precipitation, irradiance, wind speed). The data on the right illustrates a 
volatile region in more detail.   

Supporting Evidence (2/2) – Modelled UIG plots 
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For the peak at 2nd April 2018, UIG was 25%. The non-linear machine learnt model (with all the weather inputs) predicts UIG of 9%. This 
suggests that such a model might be able to reduce this peak UIG from 25% to 16%. There was no improvement on this value 
from the comparable machine learning results in task ‘Machine learning against UIG for raw inputs to NDM’. 
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Correlation of UIG against raw inputs on 
sample set for low EUCs 



Findings Status Closed 

Area & Ref # Accuracy of NDM Algorithm - Use of Weather Data - Weather Data Inputs (machine learning) (Ref # 13.2.5) UIG Impact Peak 
Volatility % N/A 

UIG Impact Annual 
Average % N/A UIG Hypothesis  

Specific Item 
The finding for ’13.3.2 NDM Sample Data Outliers’ illustrated that there was some possibility that low EUCs 
appeared to track each other very well, and showed some signs of tracking UIG volatility but might be masked by the 
behaviour seen in the weather insensitive large EUCs. Confidence in 

Percentages N/A 

Data Tree 
References 

Weather, EUC, Day of the week, Market Sector, CWV 

Findings Approach to analysis  
• UIG for Industrial users in EUC1 has very significant correlations with day-of-week 
• UIG for Domestic users also have significant day of week  correlations in some LDZs, but not in others (SC, EA, NE, SO & SW) 
• There are significant correlations with CWV in EUC1 industrial when the EUC derived from the sample measurement is different 

to the UK Link EUC, occasionally also in higher EUCs 
• Day-of-week correlations are more prominent in LDZs where the sample set UIG is large relative to the total gas usage. This 

suggests where this problem exists, it is very significant. 
• Observation 1: By looking at correlations on low EUCs (and further breaking down by market sector code), the model error 

volatility (i.e. sample UIG peak to peak) may be reduced to 30% of its value by a simple linear correlation. This supports the 
hypothesis that effects from higher EUCs are masking effects in the lower EUCs. 

• Observation 2: The clear differences across LDZs suggest some LDZs model the sample set better than others. As the sample 
set is changing this may be due to the new sample set being different in some significant way to the sample set the model was 
developed on. We suspect this is due to different AQ representations. 

• Observation 3: There is a difference between the EUC1 Industrial/Commercial and Domestic behaviours. This suggests that 
the current segmentation into EUCs based solely on AQs should be extended to include the I/C & D split. 

• This means that there may be benefit in producing Demand models from the sample set using techniques to compensate for 
the AQ distribution in the sample set being different from the user population.  
 

For EUCs 1-5, the demand estimation error 
(sample UIG) in the sample set in each EUC 
was split to highlight the different 
contributions from sites with correct AQs 
(AQs for which the stated AQ matches the 
measured AQ) and incorrect AQs, and EUC 
1 was further split into Domestic and 
Industrial users according to the market 
sector code. 
The resultant sample set UIG was correlated 
against day-of-week, CWV, and change in 
CWV. Residual plots and R-squared 
statistics are presented 

Summary of Findings 
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These tables show the R-squared values (i.e. strength of correlation described as a range 0 to 1 where higher is better) correlating the sample data demand error 
(sample UIG) with a weekend / weekday flag. 
• There are significant correlations with day of the week in EUC1, occasionally also in EUC2 

• Industrial users in EUC1 (EUC1_I) have very significant correlations with day-of-week 
• Domestic users in EUC1 (EUC1_D) also have significant correlations in some LDZs, but not in others (SC, EA, NE, SO & SW) 

• NOTE – The green cells show strong correlation, the red show low/no correlation 

Supporting Evidence (1/4) – R-squared values for day-of-week correlation 

LDZ EUC1_D EUC1_I EUC2 EUC3 EUC4 EUC5 
EA 0.02 0.45 0.09 0.06 0.01 0.1 
EM 0.24 0.59 0.25 0.01 0.01 0 
NE 0.06 0.28 0 0.02 0.01 0.01 
NO 0.48 0.68 0.43 0.37 0.19 0.12 
NT 0.38 0.57 0.01 0.01 0 0.15 
NW 0.31 0.62 0.33 0.08 0 0.03 
SC 0.09 0.53 0.04 0.03 0.08 0 
SE 0.23 0.67 0 0.07 0.04 0 
SO 0.08 0.59 0 0 0 0.16 
SW 0 0.41 0.03 0.06 0.03 0.04 
WM 0.42 0.7 0.21 0.06 0 0.11 
WN 0.19 0.64 0.29 0.24 0.08 0.07 
WS 0.45 0.56 0.41 0.26 0.02 0.1 

Row EUC1_D EUC1_I EUC2 EUC3 EUC4 EUC5 
EA 0.25 0.01 0.15 0.22 0 0.01 
EM 0.01 0.08 0 0.03 0.13 0.03 
NE 0.36 0.11 0.07 0 0.03 0.04 
NO 0.07 0.13 0.56 0.19 0.02 0.02 
NT 0.08 0.01 0.32 0.08 0.02 0.02 
NW 0.05 0 0.05 0.01 0.34 0.02 
SC 0 0.02 0.01 0.01 0.05 0.12 
SE 0 0.27 0.11 0 0 0.02 
SO 0.45 0.44 0.03 0 0.09 0.11 
SW 0.04 0 0.12 0.06 0.09 0.03 
WM 0.01 0.13 0.04 0.02 0.09 0.16 
WN [No Mismatch] 0.15 0.07 0.02 0.01 0.03 
WS 0.01 0.3 0.69 0.22 0.02 0.09 

R-squared values for sample data allocated into EUCs band that match the 
measured consumption (‘matching’ EUC) 

R-squared values for sample data allocated into EUCs band that do not 
match the measured consumption (‘mismatch’ EUC) 
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These tables show the R-squared (i.e. strength of correlation described as a range 0 to 1 where higher is better) values correlating the sample data UIG with CWV. 
• There are significant correlations with CWV in EUC1 industrial, occasionally also in higher EUCs 
• NOTE – The green cells show strong correlation, the red show low/no correlation 

Supporting Evidence (2/4) – R-squared values for CWV correlation 

Row EUC1_D EUC1_I EUC2 EUC3 EUC4 EUC5 
EA 0.11 0.75 0.55 0.27 0.22 0.25 
EM 0.21 0.77 0.38 0.02 0.57 0.24 
NE 0.01 0.39 0.16 0.57 0.39 0.36 
NO 0.04 0.83 0.44 0.47 0.23 0.21 
NT 0.19 0.61 0.24 0.06 0.36 0.38 
NW 0.33 0.77 0.08 0.42 0.01 0.35 
SC 0.14 0.91 0.75 0.38 0.03 0.61 
SE 0.21 0.77 0.96 0.58 0.56 0.75 
SO 0.2 0.24 0.93 0.08 0.39 0.84 
SW 0.03 0.81 0.67 0.16 0.01 0.58 
WM 0.27 0.76 0.15 0.38 0.18 0.37 
WN [No Mismatch] 0.07 0.01 0.26 0.73 0.05 
WS 0.86 0.71 0.03 0.07 0.2 0 

Row EUC1_D EUC1_I EUC2 EUC3 EUC4 EUC5 
EA 0.18 0.11 0.03 0.09 0.09 0.1 
EM 0 0.01 0.03 0 0.07 0.19 
NE 0.01 0.01 0.02 0.1 0.04 0.01 
NO 0.02 0.01 0.1 0 0 0.03 
NT 0.02 0.23 0.02 0.03 0 0.01 
NW 0 0 0.11 0.01 0.01 0.01 
SC 0.01 0.06 0 0.18 0.15 0 
SE 0.01 0.25 0.2 0.06 0 0.08 
SO 0.1 0 0.13 0.01 0.01 0.2 
SW 0.44 0.04 0 0.04 0 0.07 
WM 0.04 0.01 0.08 0.06 0.08 0.25 
WN 0.15 0 0.1 0.01 0.03 0.01 
WS 0.02 0 0.01 0 0.07 0.01 

R-squared values for sample data allocated into EUCs band that match the 
measured consumption (i.e. ‘matching’ EUC) 

R-squared values for sample data allocated into EUCs band that do not 
match the measured consumption (i.e. ‘mismatching’ EUC) 
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These graphs show the sample demand estimation error (Effectively UIG in the 
Sample set, blue) and the residual error after correlation with CWV (green) and a 
combination of day-of-week with CWV (black), for West Midlands (WM LDZ), which 
has a large UIG percentage on the sample set. 
 
The analysis attempts to remove the UIG predicted by various inputs to leave the 
remaining UIG which could be driven by other factors. The smaller these residual 
values, the more UIG can potentially be explained by changes in the tested input 
variable. 
 
The top graph shows the residuals for Domestic users with UK Link EUCs that 
match an EUC derived from the NDM sample consumption. There is clear day-of-
week effects (R=0.42), significantly mitigated by the correlation (although some 
residual remains, suggesting the relationship could be more complicated than 
linear)  

 
The second graph shows the residuals for Domestic users with UK Link EUCs that 
do not match an EUC derived from the NDM sample consumption. There is a clear 
CWV (R=0.27) and day-of-week effect, but only the CWV leads to an improvement. 
A combination of factors may lead to further reduction. 

 
The third graph shows the residuals for Industrial users with matching EUCs. 
There is a very large day-of-week effect (R=0.7), which is significantly reduced by 
the day-of-week linear model. 
• Note the necessity for the combination of day-of-week with CWV here – red is 

the day-of-week only residual, and its performance is limited because it injects 
errors in the summer. 

 
The fourth graph shows the residuals for Industrial users with mismatching EUCs. 
There is a possible weak day-of-week effect, but this is dominated by a CWV 
effect(R=0.76). 

Supporting Evidence (3/4) – WM EUC1 Sample Set UIG correlations with Domestic/Commercial Split 
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These graphs show the sample error (blue) and residual after correlations with 
CWV (green) and a combination of day-of-week with CWV (black). Scotland has a 
relatively small UIG percentage on the sample set 
 
The top graph shows the residuals for Domestic users with matching EUCs. There 
is no day-of-week or CWV effects (R<0.09),  
 

 
 

The second graph shows the residuals for Domestic users with mismatching 
EUCs. Again, there is no day-of-week or CWV effects (R<0.14),  

 
 
 
 
The third graph shows the residuals for Industrial users with matching EUCs. 
There is a large day-of-week effect (R=0.53), which is significantly reduced by the 
day-of-week linear model. 
 
 
The fourth graph shows the residuals for Industrial users with mismatching EUCs. 
There is a possible weak day-of-week effect, but this is dominated by a very large 
CWV effect(R=0.91), .  
 

Supporting Evidence (4/4) – SC EUC1 Sample Set UIG correlations with Domestic/Commercial Split 

Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017
-5000

0

5000
SC EUC1 Sample Data Error & Linear Modes Residual Errors

Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017
-5000

0

5000

S
am

pl
e 

E
rro

r (
kW

h)

Sample Error

Weekend Model

CWV Model

CWV Delta Model

Weekend*(16-CWV) Model

Weekend model residual 
 

CWV model residual 
 

CWV delta model residual 
 

Comb. w/e & CWV model res. 

Weekend model residual 
 

CWV model residual 
 

CWV delta model residual 
 

Comb. w/e & CWV model res. 

Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017 
-5000 

0 

5000 
SC EUC1 Sample Data Error & Linear Modes Residual Errors 

Nov 2016 Jan 2017 Mar 2017 May 2017 Jul 2017 Sep 2017 
-1000 

0 

1000 

S
 a m

 p l
 e  

 E
 r r

 o r
   ( k

 W
 h )

 

Sample Error 
Weekend Model 
CWV Model 
CWV Delta Model 
Weekend*(16-CWV) Model 

15 


	UIG Task Force ��13.2.5: - Accuracy of NDM Algorithm - use of Weather Data – (basic machine learning)
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Machine learning against UIG with �additional data to NDM
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Correlation of UIG against raw inputs on sample set for low EUCs
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15

